Approximate Nullspace Iterations for Kkt Systems in Model Based Optimization

نویسندگان

  • KAZUFUMI ITO
  • KARL KUNISCH
  • ILIA GHERMAN
چکیده

The aim of the paper is to provide a theoretical basis for approximate reduced SQP methods. In contrast to inexact reduced SQP methods, the forward and the adjoint problem accuracies are not increased when zooming in to the solution of an optimization problem. Only linear-quadratic problems are treated, where approximate reduced SQP methods can be viewed as null-space iterations for KKT systems. Theoretical convergence results are given. Numerical examples illustrate the results and show that convergence also holds in cases when the assumptions guaranteeing convergence are not satisfied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Performance Realtime Convex Solver for Embedded Systems

Convex optimization solvers for embedded systems find widespread use. This letter presents a novel technique to reduce the run-time of decomposition of KKT matrix for the convex optimization solver for an embedded system, by two orders of magnitude. We use the property that although the KKT matrix changes, some of its block sub-matrices are fixed during the solution iterations and the associate...

متن کامل

Spectral gradient methods for linearly constrained optimization

Linearly constrained optimization problems with simple bounds are considered in the present work. First, a preconditioned spectral gradient method is defined for the case in which no simple bounds are present. This algorithm can be viewed as a quasiNewton method in which the approximate Hessians satisfy a weak secant equation. The spectral choice of steplength is embedded into the Hessian appro...

متن کامل

Certification of early terminated first-order optimization-based controllers

This paper proposes a stability verification method for systems controlled by an early terminated first-order method (e.g., an MPC problem approximately solved by a fixed number of iterations of the fast gradient method). The method is based on the observation that each step of the vast majority of first-order methods is characterized by a Karush-Kuhn-Tucker (KKT) system which (provided that al...

متن کامل

Convergence of trust region augmented Lagrangian methods using variable

To date the primary focus of most constrained approximate optimization strategies is that application of the method should lead to improved designs. Few researchers have focused on the development of constrained approximate optimization strategies that are assured of converging to a Karush-Kuhn-Tucker (KKT) point for the problem. Recent work by the authors based on a trust region model manageme...

متن کامل

Convergence detection for optimization algorithms: Approximate-KKT stopping criterion when Lagrange multipliers are not available

In this paper we investigate how to efficiently apply ApproximateKarush-Kuhn-Tucker (AKKT) proximity measures as stopping criteria for optimization algorithms that do not generate approximations to Lagrange multipliers, in particular, Genetic Algorithms. We prove that for a wide range of constrained optimization problems the KKT error measurement tends to zero. We also develop a simple model to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008